Semiautomatic tractography: motor pathway segmentation in patients with intracranial vascular malformations

Author:

Byrnes Tiernan J. D.1,Barrick Thomas R.1,Bell B. Anthony1,Clark Chris A.2

Affiliation:

1. Centre for Clinical Neuroscience, St. George's University of London, Cranmer Terrace; and

2. Radiology and Physics Unit, University College London Institute of Child Health, London, United Kingdom

Abstract

Object The visualization of white matter tracts using tractography has previously been achieved by displaying streamlines that pass between regions of interest (ROIs). These techniques require a significant amount of user interaction, and their results are entirely dependent on the positioning of the ROIs. Furthermore, in patients with intracerebral hemorrhage secondary to intracranial vascular malformation, there is often significant cerebral edema and susceptibility artifact from the hematoma, which degrade the reliability of tractography. In this paper, the authors' objectives were to visualize the motor pathways of patients with hemorrhagic and nonhemorrhagic vascular malformations by using a novel semiautomated technique that functions without the need for multiple ROIs. Methods The authors investigated the tractography appearance of the descending motor pathways in 6 patients with intracranial vascular malformations. Of these patients 4 presented with a spontaneous intracranial hemorrhage, 2 of whom were clinically hemiparetic. Diffusion tensor imaging was performed using a 1.5-T clinical MR imaging system, and whole-brain tractography was performed after reconstruction of the data. A fractional anisotropy threshold of 0.05 was used to terminate the tractography. The semiautomatic motor pathway segmentation technique required definition of a single voxel within the corticospinal tract of the medulla from which the descending motor pathways were automatically defined by grouping together all streamlines within the entire image with a geometry similar to that of the single streamline generated from this initial voxel. The results of this segmentation were then visually assessed and compared with the patient's motor function. Results The authors' semiautomatic algorithm consistently visualized the location of the descending motor pathways in patients with nonhemorrhagic and hemorrhagic vascular malformations. In 1 patient whose complete right hemiplegia (complete paralysis) was caused by a large left frontal hematoma that bisected the descending motor pathways, the authors were unable to reconstruct the motor pathways due to severe tract degeneration. However, in all cases in which motor function was intact or only mildly impaired, the technique clearly delineated the motor pathways, even in the presence of large anatomical displacement by the vascular abnormality or associated hemorrhage. Conclusions Semiautomatic tractography allows consistent and rapid demonstration of the descending motor pathways in patients with hemorrhagic and nonhemorrhagic intracranial vascular malformations. The technique allows the use of a comparatively low fractional anisotropy threshold and does not require the definition of multiple ROIs. These techniques may help to improve the clinical feasibility and potentially the reliability of tractography for the evaluation of patients with intracranial vascular malformations as well as other space-occupying lesions of the brain.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3