Acute intracranial hypertension and auditory brain-stem responses

Author:

Nagao Seigo,Roccaforte Peter,Moody Robert A.

Abstract

✓ Changes in auditory brain-stem responses (BER's) and somatosensory evoked responses (SER's) were investigated to correlate mass volume, intracranial pressure, and neurological dysfunction in mass-induced intracranial hypertension in cats. As the intracranial pressure was raised by expansion of a supratentorial balloon, the late components of the SER's were suppressed first, followed by the early components of the SER's, then Wave V and Wave IV of the BER's, in that order. This suggests that the nonspecific reticular projections are most vulnerable to compression ischemia, and the specific somatosensory pathways are the next most vulnerable. Neural activity of the auditory pathways in the upper brain stem was also gradually suppressed, but less so than that of the somatosensory pathways. After complete transtentorial herniation, in spite of immediate mass evacuation, the function of the somatosensory pathways was greatly impaired, often irreversibly. The neural activity of the auditory pathways in the upper brain stem revealed progressive recovery during a 3-hour period. The measurements of BER Wave V is thought to be useful in predicting transtentorial herniation.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3