Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications

Author:

Gottfried Oren N.1,Viskochil David H.2,Couldwell William T.1

Affiliation:

1. 1Department of Neurosurgery and

2. 2Department of Pediatrics, Division of Genetics, University of Utah, Salt Lake City, Utah

Abstract

Neurofibromatosis Type 1 (NF1) is a common autosomal dominant disease characterized by complex and multicellular neurofibroma tumors, and less frequently by malignant peripheral nerve sheath tumors (MPNSTs) and optic nerve gliomas. Significant advances have been made in elucidating the cellular, genetic, and molecular biology involved in tumor formation in NF1. Neurofibromatosis Type 1 is caused by germline mutations of theNF1tumor suppressor gene, which generally result in decreased intracellular neurofibromin protein levels, leading to increased cascade Ras signaling to its downstream effectors. Multiple key pathways are involved with the development of tumors in NF1, including Ras/mitogen-activated protein kinase (MAPK) and Akt/mammalian target of rapamycin (mTOR). Interestingly, recent studies demonstrate that multiple other developmental syndromes (in addition to NF1) share phenotypic features resulting from germline mutations in genes responsible for components of the Ras/MAPK pathway. In general, a somatic loss of the secondNF1allele, also referred to as loss of heterozygosity, in the progenitor cell, either the Schwann cell or its precursor, combined with haploinsufficiency in multiple supporting cells is required for tumor formation. Importantly, a complex series of interactions with these other cell types in neurofibroma tumorigenesis is mediated by abnormal expression of growth factors and their receptors and modification of gene expression, a key example of which is the process of recruitment and involvement of theNF1+/–heterozygous mast cell. In general, for malignant transformation to occur, there must be accumulation of additional mutations of multiple genes includingINK4A/ARFandP53,with resulting abnormalities of their respective signal cascades. Further, abnormalities of theNF1gene and molecular cascade described above have been implicated in the tumorigenesis of NF1 and some sporadically occurring gliomas, and thus, these treatment options may have wider applicability. Finally, increased knowledge of molecular and cellular mechanisms involved with NF1 tumorigenesis has led to multiple preclinical and clinical studies of targeted therapy, including the mTOR inhibitor rapamycin, which is demonstrating promising preclinical results for treatment of MPNSTs and gliomas.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Clinical Neurology,General Medicine,Surgery

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3