Author:
Tomes Daniel J.,Hellbusch Leslie C.,Alberts L. Russell
Abstract
Object. Cerebrospinal fluid (CSF) shunt system malfunction due to silastic tubing fracture necessitates revision surgery in shunt-dependent individuals. The goal of this study was to examine the mechanical stretching and breaking characteristics of new and used CSF shunt tubing catheters to determine if any inherent physical properties predispose the tubing to fracture.
Methods. Fifty-millimeter segments of new and retrieved (used) CSF shunt tubing were stretched to 120 mm in a hydraulic press to determine modulus values (modulus = stress/strain) and to measure permanent tubing deformation imparted by the applied stress and strain. Similar 50-mm tubing segments were also stretched in an electromechanical material testing system until fracture occurred; the force and strain needed to break the tubing was recorded at the time of failure. The results demonstrate that shunt tubing with a greater cross-sectional area requires greater force to fracture, and that catheters become weaker the longer they are implanted. Barium-impregnated shunt tubing, compared with translucent tubing, appears to require less applied stress and strain to break and may fracture more easily in vivo. The variety of modulus values obtained for the new catheters tested indicates that the various companies may be using materials of different quality in tubing manufacture.
Conclusions. A CSF shunt catheter design that incorporates tubing with a greater cross-sectional area may lead to fewer fractures of indwelling catheters and a reduction in shunt revision surgery.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献