Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide

Author:

Kanzawa Takao,Bedwell Joshua,Kondo Yasuko,Kondo Seiji,Germano Isabelle M.

Abstract

Object. Temozolomide (TMZ) is a DNA alkylating agent currently used as adjuvant treatment for anaplastic astrocytomas. Its use in managing glioblastoma multiforme has been halted because of the lack of therapeutic effects due to cell resistance. Note that O6-alkylguanine—DNA alkyltranferase (AGT) is a DNA repair enzyme that limits the efficacy of TMZ. In this study the authors investigated the ability of O6-benzylguanine (BG), an AGT inhibitor, to sensitize a glioblastoma cell line resistant to TMZ. Methods. The effects of TMZ alone (100 µg) and after exposure to BG (50 µg) were assessed in two glioblastoma cell lines, U373-MG and T98G, respectively, sensitive and resistant to TMZ. Cell viability was assessed using trypan blue; cell cycle analysis by fluorescence-activated cell sorter; and apoptosis and autophagy by terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and acridine orange staining, respectively. Furthermore, the involvement of an autophagy marker, microtubule-associated light chain 3 (LC3), was assessed. Temozolomide suppressed the growth of and caused cell cycle arrest in the G2—M phase of U373-MG cells but not T98G cells. Exposure to BG prior to TMZ resulted in a significant decrease in cell viability as well as cell cycle arrest in the G2—M phase in T98G cells (p < 0.05). Although apoptosis was not detected on TUNEL staining, programmed cell death Type II (autophagy) was detected after exposure to BG and TMZ in T98G cells. Conclusions. These results indicate that inhibition of AGT by BG can render previously resistant glioma cells sensitive to TMZ treatment. The mechanism of cell demise following BG-TMZ treatment seems to be autophagy and not apoptosis. Combination therapy involving TMZ and an AGT inhibitor may be an effective strategy to treat resistant gliomas.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3