Predicting the growth of middle cerebral artery bifurcation aneurysms using differences in the bifurcation angle and inflow coefficient

Author:

Miyata Takeshi12,Kataoka Hiroharu13,Shimizu Kampei1,Okada Akihiro1,Yagi Takanobu4,Imamura Hirotoshi5,Koyanagi Masaomi2,Ishibashi Ryota6,Goto Masanori7,Sakai Nobuyuki5,Hatano Taketo2,Chin Masaki6,Iwasaki Koichi7,Miyamoto Susumu1

Affiliation:

1. Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto;

2. Department of Neurosurgery, Kokura Memorial Hospital, Fukuoka;

3. Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka;

4. Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo;

5. Department of Neurosurgery, Kobe City Medical Center General Hospital, Hyogo;

6. Department of Neurosurgery, Kurashiki General Hospital, Okayama; and

7. Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Japan

Abstract

OBJECTIVE Growing intracranial aneurysms (IAs) are prone to rupture. Previous cross-sectional studies using postrupture morphology have shown the morphological or hemodynamic features related to IA rupture. Yet, which morphological or hemodynamic differences of the prerupture status can predict the growth and rupture of smaller IAs remains unknown. The purpose of this longitudinal study was to investigate the effects of morphological features and the hemodynamic environment on the growth of IAs at middle cerebral artery (MCA) bifurcations during the follow-up period. METHODS One hundred two patients with MCA M1–2 bifurcation saccular IAs who underwent follow-up for more than 2 years at the authors’ institutions between 2011 and 2019 were retrospectively identified. During the follow-up period, cases involving growth of MCA IAs were assigned to the event group, and those with MCA IAs unchanged in size were assigned to the control group. The morphological parameters examined were aneurysmal neck length, dome height, aspect ratio and volume, M1 and M2 diameters and their ratio, and angle configurations among M1, M2, and the aneurysm. Hemodynamic parameters were flow rate and wall shear stress in M1, M2, and the aneurysm, including the aneurysmal inflow rate coefficient (AIRC), defined as the ratio of the aneurysmal inflow rate to the M1 flow rate. Those parameters were compared statistically between the two groups. Correlations between morphological and hemodynamic parameters were also examined. RESULTS Eighty-three of 102 patients were included: 25 with growing MCA IAs (event group) and 58 with stable MCA IAs (control group). The median patient age at initial diagnosis was 66.9 (IQR 59.8–72.3) years. The median follow-up period was 48.5 (IQR 36.5–65.6) months. Both patient age and the AIRC were significant independent predictors of the growth of MCA IAs. Moreover, the AIRC was strongly correlated with sharper bifurcation and inflow angles, as well as wider inclination angles between the M1 and M2 arteries. CONCLUSIONS The AIRC was a significant independent predictor of the growth of MCA IAs. Sharper bifurcation and inflow angles and wider inclination angles between the M1 and M2 arteries were correlated with the AIRC. MCA IAs with such a bifurcation configuration are more prone to grow and rupture.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3