Affiliation:
1. Departments of Neurosurgery and Neurology, University of California, San Francisco; and the Parkinson’s Disease Research, Education, and Care Center (PADRECC) at the San Francisco Veterans Affairs Medical Center, San Francisco, California
Abstract
Object
Deep brain stimulation (DBS) of the globus pallidus internus (GPI) is a promising new procedure for the treatment of dystonia. The authors describe their technical approach for placing electrodes into the GPI in awake patients with dystonia, including methodology for electrophysiological mapping of the GPI in the dystonic state, clinical outcomes and complications, and the location of electrodes associated with optimal benefit.
Methods
Twenty-three adult and pediatric patients with various forms of dystonia were included in this study. Baseline neurological status and DBS-related improvement in motor function were measured using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). The implantation of DBS leads was performed using magnetic resonance (MR) imaging–based stereotaxy, single-cell microelectrode recording, and intraoperative test stimulation to determine thresholds for stimulation-induced adverse effects. Electrode locations were measured on computationally reformatted postoperative MR images according to a prospective protocol.
Conclusions
Physiologically guided implantation of DBS electrodes in patients with dystonia was technically feasible in the awake state in most patients, and the morbidity rate was low. Spontaneous discharge rates of GPI neurons in dystonia were similar to those of globus pallidus externus neurons, such that the two nuclei must be distinguished by neuronal discharge patterns rather than rates. Active electrode locations associated with robust improvement (> 70% decrease in BFMDRS score) were located near the intercommissural plane, at a mean distance from the pallidocapsular border of 3.6 mm.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
214 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献