Three-tesla magnetic resonance imaging of the ventrolateral thalamus: a correlative anatomical description

Author:

Mercado Rodrigo1,Mandat Tomasz1,Wayne Moore G. R.1,Li David1,MacKay Alex1,Honey Christopher R.1

Affiliation:

1. Surgical Centre for Movement Disorders, Division of Neurosurgery; and Departments of Pathology and Radiology, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Object Surgery for tremor targets the ventrolateral nuclei of the thalamus. An initial radiological estimation of this target can be further refined through intraoperative physiological confirmation. Direct visualization of these nuclei has not yet been described. The improved signal-to-noise ratio associated with 3-tesla (3T) magnetic resonance (MR) imaging makes increased spatial resolution possible, which may aid in the identification of subtle morphological features. This study was conducted to describe the anatomy of the nuclei and fiber projections within the ventral thalamus by using 3T MR imaging. Methods Using a commercially available 3T MR unit, the authors obtained images of a formalin-fixed, paraffin-embedded brain. Slices with a 2-mm thickness and 0.2-mm gap were obtained parallel to the anterior commissure–posterior commissure (AC–PC) line. The brain was then sectioned through the cerebral hemispheres to obtain tissue slices encompassing the same levels. Adjacent 10-μm paraffin sections from the middle of each level were stained with Luxol fast blue and cresyl violet. The MR image and histological sections at the level of the AC–PC line were then compared in detail. In a separate study, the human thalamus was scanned in vivo using 3T and 1.5T MR imaging for anatomical comparison. Conclusions The anatomy of the nuclei and fiber projections within the ventrolateral thalamus in humans can be described using 3T MR imaging. The findings were reproducible in vivo with 3T but not 1.5T MR imaging. Additional studies are needed to confirm the accuracy of this observation for clinical purposes.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3