Long-term effects of experimental intracerebral hemorrhage: the role of iron

Author:

Hua Ya1,Nakamura Takehiro1,Keep Richard F.1,Wu Jimin1,Schallert Timothy1,Hoff Julian T.1,Xi Guohua1

Affiliation:

1. Departments of Neurosurgery and Physiology, University of Michigan, Ann Arbor, Michigan; and Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Texas

Abstract

Object Intracerebral hemorrhage (ICH) causes brain atrophy and neurological deficits. The mechanisms of brain atrophy after ICH are poorly understood, although recent evidence suggests that some ICH-induced brain injury results from the products of hemoglobin degradation, including iron. In this study the authors examine the role of iron in brain atrophy and neurological deficits following ICH. Methods Male Sprague–Dawley rats received an infusion of either 100 μl autologous whole blood or saline into the right caudate. Hematoxylin and eosin staining was used for histological examination, and iron levels and ferritin immunoreactivities were also examined. Deferoxamine was used as an iron chelator. Over the duration of the experiment, the rats underwent behavioral testing (forelimb placing, forelimb use asymmetry, and corner turn tests). Brain atrophy in the caudate with prolonged neurological deficits occurred after ICH. Although partial functional recovery occurred with time, residual neurological deficits were still detectable at 3 months postprocedure. Iron accumulation and ferritin upregulation were present in the ipsilateral caudate. Deferoxamine reduced brain atrophy and improved behavioral outcomes, and it also reduced brain ferritin immunoreactivity. Conclusions An ICH results in an accumulation of iron in the brain that is not cleared within 3 months and that contributes to brain tissue loss and neurological deficits posthemorrhage. Iron chelation may be a useful therapy for patients with ICH.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3