Motor neuronal and glial apoptosis in the adult facial nucleus after intracranial nerve transection

Author:

Mattsson Per1,Delfani Kioumars1,Janson Ann Marie1,Svensson Mikael1

Affiliation:

1. Departments of Clinical Neuroscience (Section for Neurosurgery) and Medical Nutrition, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden

Abstract

Object Intracranial lesions affecting the facial nerve are usually associated with significant morbidity and poor functional restitution, despite the fact that a peripheral nerve injury normally recovers well. Mechanistic explanations are needed to direct future therapies. Although neonatal motor neurons are known to die as a result of apoptosis after axotomy, this cell death mechanism has not been explicitly demonstrated after peripheral cranial nerve transection in adult mammals. Methods The authors induced substantial retrograde neuronal death in the adult rodent by transecting the facial nerve during its intracranial course. Neuronal apoptosis was demonstrated as shrunken facial motor neurons, retrogradely labeled with fluorogold and with nuclei positively labeled by terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick–end labeling (TUNEL). Glial apoptosis was demonstrated by double labeling with respect to cell type. On postinjury Days 7 and 14, the intracranial axotomy led to neuronal apoptosis, corresponding to a neuronal loss that was observed quantitatively in cresyl violet–stained tissue sections obtained using a stereological method. In contrast, no neuronal apoptosis was observed after creating a distal lesion of the facial nerve, which causes less neuronal loss. In addition, glial apoptosis was seen in the facial nucleus after both distal and proximal axotomy. Whereas the proximal intracranial axotomy led to TUNEL-positive nuclei in cells showing markers for oligodendrocytes and microglia, only the latter glial cell population was double labeled with TUNEL-positive nuclei after distal lesioning. Conclusions These findings may ultimately lead to new therapeutic strategies in patients suffering from facial nerve palsy due to an intracranial lesion.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3