Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: a possible role of mechanical stress in the development of ossification of the spinal ligaments

Author:

Tsukamoto Nobuaki1,Maeda Takeshi1,Miura Hiromasa1,Jingushi Seiya1,Hosokawa Akira1,Harimaya Katsumi1,Higaki Hidehiko1,Kurata Kousaku1,Iwamoto Yukihide1

Affiliation:

1. Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Abstract

Object Mechanical stress has been considered one of the important factors in ossification of the spinal ligaments. According to previous clinical and in vitro studies, the accumulation of tensile stress to these ligaments may be responsible for ligament ossification. To elucidate the relationship between such mechanical stress and the development of ossification of the spinal ligaments, the authors established an animal experimental model in which the in vivo response of the spinal ligaments to direct repetitive tensile loading could be observed. Methods The caudal vertebrae of adult Wistar rats were studied. After creating a novel stimulating apparatus, cyclic tensile force was loaded to rat caudal spinal ligaments at 10 N in 600 to 1800 cycles per day for up to 2 weeks. The morphological responses were then evaluated histologically and immunohistochemically. After the loadings, ectopic cartilaginous formations surrounded by proliferating round cells were observed near the insertion of the spinal ligaments. Several areas of the cartilaginous tissue were accompanied by woven bone. Bone morphogenetic protein–2 expression was clearly observed in the cytoplasm of the proliferating round cells. The histological features of the rat spinal ligaments induced by the tensile loadings resembled those of spinal ligament ossification observed in humans. Conclusions The findings obtained in the present study strongly suggest that repetitive tensile stress to the spinal ligaments is one of the important causes of ligament ossification in the spine.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3