Cytosolic calcium changes in endothelial cells induced by a protein product of human gliomas containing vascular permeability factor activity

Author:

Criscuolo Gregory R.,Lelkes Peter I.,Rotrosen Daniel,Oldfield Edward H.

Abstract

✓ A vascular permeability factor (VPF) derived from serum-free conditioned medium of cultured human malignant gliomas (HG-VPF) has been described previously. The rapid kinetics of HG-VPF activity in an in vivo assay of vascular permeability suggests a direct action upon the vascular endothelial cell. To determine whether HG-VPF was capable of inducing a physiologically significant alteration in isolated endothelial cells, cytosolic calcium [Ca++]i was measured in vitro in these cells before and after their exposure to media containing this substance. This was accomplished by preloading cultured endothelial cells with a fluorescent intracellular Ca++ probe fura-2/AM. It was found that HG-VPF induced a rapid and transient elevation of [Ca++]i in normal endothelial cells derived from human umbilical vein, bovine adrenal medulla, bovine pulmonary artery, and rat brain. This effect was inhibited by chelating extracellular calcium [Ca++]e with ethyleneglycol-bis (β-aminoethylether)-N,N″ -tetra-acetic acid (EGTA), indicating that the HG-VPF-induced response resulted from the influx of extracellular calcium. The addition of cations that act as nonspecific calcium channel blockers (Li+, Co++, Mn++, La+++) completely inhibited VPF activity, further supporting the role of [Ca++]e influx. The HG-VPF activity was not, however, blocked by verapamil, a calcium antagonist that appears to be specific for voltage-gated calcium channels. Furthermore, exposure of endothelial cells to 120 mM [K+]e did not result in a calcium transient. Coincubation of endothelial cells with dexamethasone inhibited HG-VPF-induced rises in [Ca++]i, while having no effect upon cyclic nucleotide-induced changes in calcium. The present studies indicate that vascular extravasation induced by human glioma-derived VPF may be mediated by a direct action upon vascular endothelial cells. Furthermore, the observed dexamethasone-induced inhibition of this process suggests a specific cellular action for corticosteroids. This, together with previous observations that dexamethasone suppresses both the production of VPF by tumor cells in vitro and its permeability-inducing activity in vivo, may explain the efficacy of glucocorticoids in the treatment of neoplastic vasogenic brain edema. Finally, studies with a polycationic peptide (protamine) known to induce blood-brain barrier disruption in vivo revealed similar effects upon endothelial cytosolic calcium levels. As HG-VPF is a positively charged macromolecule, a common interaction between these substances and the negatively charged endothelial cell surface in the induction of permeability is suggested. Nonspecific cross-linking of charged groups of the endothelial glycocalyx and specific HG-VPF receptor binding are both valid mechanisms of HG-VPF-mediated calcium changes. Their potential relevance in the setting of microvascular permeability is discussed.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3