Clinical experience with a continuous monitor of intracranial compliance

Author:

Robertson Claudia S.,Narayan Raj K.,Contant Charles F.,Grossman Robert G.,Gokaslan Ziya L.,Pahwa Rajesh,Caram Pedro,Bray Robert S.,Sherwood Arthur M.

Abstract

✓ Intracranial compliance, as estimated from a computerized frequency analysis of the intracranial pressure (ICP) waveform, was continuously monitored during the acute postinjury phase in 55 head-injured patients. In previous studies, the high-frequency centroid (HFC), which was defined as the power-weighted average frequency within the 4- to 15-Hz band of the ICP power density spectrum, was found to inversely correlate with the pressure-volume index (PVI). An HFC of 6.5 to 7.0 Hz was normal, while an increase in the HFC to 9.0 Hz coincided with a reduction in the PVI to 13 ml and indicated exhaustion of intracranial volume-buffering capacity. The mean HFC for individual patients in the present study ranged from 6.8 to 9.0 Hz, and the length of time that the HFC was greater than 9.0 Hz ranged from 0 to 104.8 hours. The mortality rate increased concomitantly with the mean HFC, from 7% when the mean HFC was less than 7.5 Hz to 46% when the mean HFC was 8.5 Hz or greater. The length of time that the HFC was 9.0 Hz or greater was also associated with an increased mortality rate, which ranged from 16% if the HFC was never above 9.0 Hz to 60% if the HFC was 9.0 Hz or greater for more than 12 hours. In 12 patients who developed uncontrollable intracranial hypertension or clinical signs of tentorial herniation during the monitoring period, 75% were observed to have had an increase in the HFC to 9.0 Hz or more 1 to 36 hours prior to the clinical decompensation. The more rapid the increase in the HFC, the more likely the deterioration was to be caused by an intracranial hematoma. Continuous monitoring of intracranial compliance by computerized analysis of the ICP waveform may provide an earlier warning of neurological decompensation than ICP per se and, unlike PVI, does not require volumetric manipulation of intracranial volume.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3