Author:
Nariai Tadashi,DeGeorge Joseph J.,Greig Nigel H.,Rapoport Stanley I.
Abstract
✓ Lipid metabolism of an intracerebrally implanted brain tumor and normal brain was investigated in awake Fischer 344 rats using intravenously injected [9, 10-3H]-palmitate as a probe. A suspension of Walker 256 carcinosarcoma cells (250 cells in 5 µl medium), with or without 1 % low-melting-point agar, was implanted into the caudate nucleus of rats 8 to 9 weeks old. Control animals received an intracerebral injection without tumor cells. Seven days after implantation, awake rats were infused intravenously for 5 minutes with [9, 10-3H]-palmitate (6.4 mCi/kg). The rats were killed 20 minutes after initiation of the infusion and coronal brain slices were obtained for quantitative autoradiography and light histological study. Tumor cell masses were histologically well demarcated from the surrounding brain tissue. Tumor tissue incorporation of [9, 10-3H]- palmitate was heterogeneous, ranging on average from 3.1- to 6.1-fold greater than in the corresponding contralateral brain. In addition, incorporation corresponded to regional tumor cell density. The incorporation rate constant of [9, 10-3H]-palmitate in tumor was significantly increased compared to control brain and was independent of tumor size. Necrotic areas within tumors showed no incorporation of radiolabeled palmitate. Brain surrounding the tumors and control injection sites showed reactive gliosis, and possessed 30% greater incorporation of [9, 10-3H]-palmitate than contralateral normal brain. These results suggest that [9, 10-3H]- palmitate can be used to image brain tumors in vivo, measuring turnover and/or synthesis of tumor and brain lipid.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献