Continuous monitoring of regional cerebral blood flow during temporary arterial occlusion in aneurysm surgery

Author:

Thomé Claudius,Vajkoczy Peter,Horn Peter,Bauhuf Christian,Hübner Ulrich,Schmiedek Peter

Abstract

Object. Temporary arterial occlusion (TAO) during aneurysm surgery carries the risk of ischemic sequelae. Because monitoring of regional cerebral blood flow (rCBF) may limit neurological damage, the authors evaluated a novel thermal diffusion (TD) microprobe for use in the continuous and quantitative assessment of rCBF during TAO. Methods. Following subcortical implantation of the device at a depth of 20 mm in the middle cerebral artery or anterior cerebral artery territory, rCBF was continuously monitored by TD microprobe (TD-rCBF) throughout surgery in 20 patients harboring anterior circulation aneurysms; 46 occlusive episodes were recorded. Postoperative radiographic evidence of new infarction was used as the threshold for failure of occlusion tolerance. The mean subcortical TD-rCBF decreased from 27.8 ± 8.4 ml/100 g/min at baseline to 13.7 ± 11.1 ml/100 g/min (p < 0.0001) during TAO. The TD microprobe showed an immediate exponential decline of TD-rCBF on clip placement. On average, 50% of the total decrease was reached after 12 seconds, thus rapidly indicating the severity of hypoperfusion. Following clip removal, TD-rCBF returned to baseline levels after an average interval of 32 seconds, and subsequently demonstrated a transient hyperperfusion to 41.4 ± 18.3 ml/100 g/min (p < 0.001). The occurrence of postoperative infarction (15%) and the extent of postischemic hyperperfusion correlated with the depth of occlusion-induced ischemia. Conclusions. The new TD microprobe provides a sensitive, continuous, and real-time assessment of intraoperative rCBF during TAO. Occlusion-induced ischemia is reliably detected within the 1st minute after clip application. In the future, this may enable the surgeon to alter the surgical strategy early after TAO to prevent ischemic brain injury.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3