Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold

Author:

Tateshima Satoshi,Murayama Yuichi,Villablanca J. Pablo,Morino Taku,Takahashi Hikoichiro,Yamauchi Takatsugu,Tanishita Kazuo,Viñuela Fernando

Abstract

Object. To obtain precise flow profiles in patients' aneurysms, the authors developed a new in vitro study method featuring an aneurysm model manufactured using three-dimensional computerized tomography (3D CT) angiography. Methods. A clear acrylic basilar artery (BA) tip aneurysm model manufactured from a patient's 3D CT angiogram was used to analyze flow modifications during one cardiac cycle. Stereolithography was utilized to create the aneurysm model. Three-dimensional flow profiles within the aneurysm model were obtained from velocity measurements by using laser Doppler velocimetry. The aneurysm inflow/outflow zones changed dynamically in their location, size of their cross-sectional area, and also in their shapes over one cardiac cycle. The flow velocity at the inflow zone was 16.8 to 81.9% of the highest axial velocity in the BA with a pulsatility index (PI) of 1.1. The flow velocity at the outflow zone was 16.8 to 34.3% of the highest axial velocity of the BA, with a PI of 0.68. The shear stress along the walls of the aneurysm was calculated from the fluid velocity measured at a distance of 0.5 mm from the wall. The highest value of shear stress was observed at the bleb of the aneurysm. Conclusions. This clear acrylic model of a BA tip aneurysm manufactured using a CT angiogram allowed qualitative and quantitative analysis of its flow during a cardiac cycle. Accumulated knowledge from this type of study may reveal pertinent information about aneurysmal flow dynamics that will help practitioners understand the relationship among anatomy, flow dynamics, and the natural history of aneurysms.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Reference47 articles.

1. Endothelium-derived nitric oxide and vascular physiology and pathology

2. Caro CG, Pedley TJ, Schroter RC, et al:The Mechanics of the Circulation.New York: Oxford University Press, 1978, pp 79–85

3. Endothelial Dysfunction in Human Disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3