Affiliation:
1. Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen;
2. Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
Abstract
OBJECTIVE
Conventional frame-based stereotaxy through a transfrontal approach (TFA) is the gold standard in brainstem biopsies. Because of the high surgical morbidity and limited impact on therapy, brainstem biopsies are controversial. The introduction of robot-assisted stereotaxy potentially improves the risk-benefit ratio by simplifying a transcerebellar approach (TCA). The aim of this single-center cohort study was to evaluate the risk-benefit ratio of transcerebellar brainstem biopsies performed by 2 different robotic systems. In addition to standard quality indicators, a special focus was set on trajectory selection for reducing surgical morbidity.
METHODS
This study included 25 pediatric (n = 7) and adult (n = 18) patients who underwent 26 robot-assisted biopsies via a TCA. The diagnostic yield, complication rate, trajectory characteristics (i.e., length, anatomical entry, and target-point location), and skin-to-skin (STS) time were evaluated. Transcerebellar and hypothetical transfrontal trajectories were reconstructed and transferred into a common MR space for further comparison with anatomical atlases.
RESULTS
Robot-assisted, transcerebellar biopsies demonstrated a high diagnostic yield (96.2%) while exerting no surgical mortality and no permanent morbidity in both pediatric and adult patients. Only 3.8% of cases involved a transient neurological deterioration. Transcerebellar trajectories had a length of 48.4 ± 7.3 mm using a wide stereotactic corridor via crus I or II of the cerebellum and the middle cerebellar peduncle. The mean STS time was 49.5 ± 23.7 minutes and differed significantly between the robotic systems (p = 0.017). The TFA was characterized by longer trajectories (107.4 ± 11.8 mm, p < 0.001) and affected multiple eloquent structures. Transfrontal target points were located significantly more medial (−3.4 ± 7.2 mm, p = 0.042) and anterior (−3.9 ± 8.4 mm, p = 0.048) in comparison with the transcerebellar trajectories.
CONCLUSIONS
Robot-assisted, transcerebellar stereotaxy can improve the risk-benefit ratio of brainstem biopsies by avoiding the restrictions of a TFA and conventional frame-based stereotaxy. Profound registration and anatomical-functional trajectory selection were essential to reduce mortality and morbidity.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献