Use of surgical video–based automated performance metrics to predict blood loss and success of simulated vascular injury control in neurosurgery: a pilot study

Author:

Pangal Dhiraj J.1,Kugener Guillaume1,Cardinal Tyler1,Lechtholz-Zey Elizabeth1,Collet Casey1,Lasky Sasha1,Sundaram Shivani1,Zhu Yichao1,Roshannai Arman1,Chan Justin1,Sinha Aditya1,Hung Andrew J.2,Anandkumar Animashree3,Zada Gabriel1,Donoho Daniel A.4

Affiliation:

1. Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California;

2. Center for Robotic Simulation and Education, USC Institute of Urology, Keck School of Medicine of the University of Southern California, Los Angeles, California;

3. Computing + Mathematical Sciences, California Institute of Technology, Pasadena, California; and

4. Division of Neurosurgery, Center for Neuroscience, Children’s National Medical Center, Washington, DC

Abstract

OBJECTIVE Experts can assess surgeon skill using surgical video, but a limited number of expert surgeons are available. Automated performance metrics (APMs) are a promising alternative but have not been created from operative videos in neurosurgery to date. The authors aimed to evaluate whether video-based APMs can predict task success and blood loss during endonasal endoscopic surgery in a validated cadaveric simulator of vascular injury of the internal carotid artery. METHODS Videos of cadaveric simulation trials by 73 neurosurgeons and otorhinolaryngologists were analyzed and manually annotated with bounding boxes to identify the surgical instruments in the frame. APMs in five domains were defined—instrument usage, time-to-phase, instrument disappearance, instrument movement, and instrument interactions—on the basis of expert analysis and task-specific surgical progressions. Bounding-box data of instrument position were then used to generate APMs for each trial. Multivariate linear regression was used to test for the associations between APMs and blood loss and task success (hemorrhage control in less than 5 minutes). The APMs of 93 successful trials were compared with the APMs of 49 unsuccessful trials. RESULTS In total, 29,151 frames of surgical video were annotated. Successful simulation trials had superior APMs in each domain, including proportionately more time spent with the key instruments in view (p < 0.001) and less time without hemorrhage control (p = 0.002). APMs in all domains improved in subsequent trials after the participants received personalized expert instruction. Attending surgeons had superior instrument usage, time-to-phase, and instrument disappearance metrics compared with resident surgeons (p < 0.01). APMs predicted surgeon performance better than surgeon training level or prior experience. A regression model that included APMs predicted blood loss with an R2 value of 0.87 (p < 0.001). CONCLUSIONS Video-based APMs were superior predictors of simulation trial success and blood loss than surgeon characteristics such as case volume and attending status. Surgeon educators can use APMs to assess competency, quantify performance, and provide actionable, structured feedback in order to improve patient outcomes. Validation of APMs provides a benchmark for further development of fully automated video assessment pipelines that utilize machine learning and computer vision.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3