Loss of mechanosensitive sclerostin may accelerate cranial bone growth and regeneration

Author:

Kang Kyung Shin12,Lastfogel Jeff3,Ackerman Laurie L.4,Jea Andrew4,Robling Alexander G.125,Tholpady Sunil S.23

Affiliation:

1. Departments of Anatomy & Cell Biology,

2. Richard L. Roudebush VA Medical Center, Indianapolis; and

3. Surgery, and

4. Neurosurgery, Indiana University School of Medicine, Indianapolis;

5. Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis, Indiana

Abstract

OBJECTIVECranial defects can result from trauma, infection, congenital malformations, and iatrogenic causes and represent a surgical challenge. The current standard of care is cranioplasty, with either autologous or allogeneic material. In either case, the intrinsic vascularity of the surrounding tissues allows for bone healing. The objective of this study was to determine if mechanotransductive gene manipulation would yield non–weight-bearing bone regeneration in a critical size calvarial defect in mice.METHODSA mouse model of Sost deletion in Sost knockout (KO) mice was created in which the osteocytes do not express sclerostin. A critical size calvarial defect (4 mm in diameter) was surgically created in the parietal bone in 8-week-old wild-type (n = 8) and Sost KO (n = 8) male mice. The defects were left undisturbed (no implant or scaffold) to simulate a traumatic calvariectomy model. Eight weeks later, the animals were examined at necropsy by planimetry, histological analysis of new bone growth, and micro-CT scanning of bone thickness.RESULTSDefects created in wild-type mice did not fill with bone over the study period of 2 months. Genetic downregulation of sclerostin yielded animals that were able to regenerate 40% of the initial critical size defect area 8 weeks after surgery. A thin layer of bone covered a significant portion of the original defect in all Sost KO animals. A statistically significant increase in bone volume (p < 0.05) was measured in Sost KO mice using radiodensitometric analysis. Immunohistochemical analysis also confirmed that this bone regeneration occurred through the Wnt pathway and originated from the edge of the defect; BMP signaling did not appear to be affected by sclerostin.CONCLUSIONSMechanical loading is an important mechanism of bone formation in the cranial skeleton and is poorly understood. This is partially due to the fact that it is difficult to load bone in the craniomaxillofacial skeleton. This study suggests that modulation of the Wnt pathway, as is able to be done with monoclonal antibodies, is a potentially efficacious method for bone regeneration that requires further study.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference78 articles.

1. The natural history of sclerosteosis;Hamersma;Clin Genet,2003

2. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration;Levi;Proc Natl Acad Sci U S A,2012

3. Use of demineralized bone matrix in the extremities;Drosos;World J Orthop,2015

4. Sclerostin antibody therapy for the treatment of osteoporosis: clinical prospects and challenges;MacNabb;J Osteoporos,2016

5. Removal of SOST or blocking its product sclerostin rescues defects in the periodontitis mouse model;Ren;FASEB J,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3