Affiliation:
1. Department of Neurosurgery, School of Medicine, Keio University, Tokyo, Japan
Abstract
OBJECTIVEThe aim of this study was to determine the most effective electrode montage to elicit lower-extremity transcranial motor evoked potentials (LE-tMEPs) using a minimum stimulation current.METHODSA realistic 3D head model was created from T1-weighted images. Finite element methods were used to visualize the electric field in the brain, which was generated by transcranial electrical stimulation via 4 electrode montage models. The stimulation threshold level of LE-tMEPs in 52 patients was also studied in a practical clinical setting to determine the effects of each electrode montage.RESULTSThe electric field in the brain radially diffused from the brain surface at a maximum just below the electrodes in the finite element models. The Cz-inion electrode montage generated a centrally distributed high electric field with a current direction longitudinal and parallel to most of the pyramidal tract fibers of the lower extremity. These features seemed to be effective in igniting LE-tMEPs.Threshold level recordings of LE-tMEPs revealed that the Cz-inion electrode montage had a lower threshold on average than the C3–C4 montage, 76.5 ± 20.6 mA and 86.2 ± 20.6 mA, respectively (31 patients, t = 4.045, p < 0.001, paired t-test). In 23 (74.2%) of 31 cases, the Cz-inion montage could elicit LE-tMEPs at a lower threshold than C3–C4.CONCLUSIONSThe C3–C4 and C1–C2 electrode montages are the standard for tMEP monitoring in neurosurgery, but the Cz-inion montage showed lower thresholds for the generation of LE-tMEPs. The Cz-inion electrode montage should be a good alternative for LE-tMEP monitoring when the C3–C4 has trouble igniting LE-tMEPs.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献