Fully automated, real-time, calibration-free, continuous noninvasive estimation of intracranial pressure in children

Author:

Fanelli Andrea1,Vonberg Frederick W.12,LaRovere Kerri L.3,Walsh Brian K.2,Smith Edward R.4,Robinson Shenandoah45,Tasker Robert C.23,Heldt Thomas1

Affiliation:

1. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge;

2. Department of Anesthesiology, Critical Care and Pain Medicine, and

3. Departments of Neurology and

4. Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts; and

5. Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland

Abstract

OBJECTIVEIn the search for a reliable, cooperation-independent, noninvasive alternative to invasive intracranial pressure (ICP) monitoring in children, various approaches have been proposed, but at the present time none are capable of providing fully automated, real-time, calibration-free, continuous and accurate ICP estimates. The authors investigated the feasibility and validity of simultaneously monitored arterial blood pressure (ABP) and middle cerebral artery (MCA) cerebral blood flow velocity (CBFV) waveforms to derive noninvasive ICP (nICP) estimates.METHODSInvasive ICP and ABP recordings were collected from 12 pediatric and young adult patients (aged 2–25 years) undergoing such monitoring as part of routine clinical care. Additionally, simultaneous transcranial Doppler (TCD) ultrasonography–based MCA CBFV waveform measurements were performed at the bedside in dedicated data collection sessions. The ABP and MCA CBFV waveforms were analyzed in the context of a mathematical model, linking them to the cerebral vasculature’s biophysical properties and ICP. The authors developed and automated a waveform preprocessing, signal-quality evaluation, and waveform-synchronization “pipeline” in order to test and objectively validate the algorithm’s performance. To generate one nICP estimate, 60 beats of ABP and MCA CBFV waveform data were analyzed. Moving the 60-beat data window forward by one beat at a time (overlapping data windows) resulted in 39,480 ICP-to-nICP comparisons across a total of 44 data-collection sessions (studies). Moving the 60-beat data window forward by 60 beats at a time (nonoverlapping data windows) resulted in 722 paired ICP-to-nICP comparisons.RESULTSGreater than 80% of all nICP estimates fell within ± 7 mm Hg of the reference measurement. Overall performance in the nonoverlapping data window approach gave a mean error (bias) of 1.0 mm Hg, standard deviation of the error (precision) of 5.1 mm Hg, and root-mean-square error of 5.2 mm Hg. The associated mean and median absolute errors were 4.2 mm Hg and 3.3 mm Hg, respectively. These results were contingent on ensuring adequate ABP and CBFV signal quality and required accurate hydrostatic pressure correction of the measured ABP waveform in relation to the elevation of the external auditory meatus. Notably, the procedure had no failed attempts at data collection, and all patients had adequate TCD data from at least one hemisphere. Last, an analysis of using study-by-study averaged nICP estimates to detect a measured ICP > 15 mm Hg resulted in an area under the receiver operating characteristic curve of 0.83, with a sensitivity of 71% and specificity of 86% for a detection threshold of nICP = 15 mm Hg.CONCLUSIONSThis nICP estimation algorithm, based on ABP and bedside TCD CBFV waveform measurements, performs in a manner comparable to invasive ICP monitoring. These findings open the possibility for rational, point-of-care treatment decisions in pediatric patients with suspected raised ICP undergoing intensive care.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference23 articles.

1. Functional outcome after intracranial pressure monitoring for children with severe traumatic brain injury;Bennett;JAMA Pediatr,2017

2. An open-source algorithm to detect onset of arterial blood pressure pulses;Zong;Comput Cardiol,2003

3. [Application of the mechanical oscillator technique for the measurement of blood density and hematocrit (author’s transl).];Hinghofer-Szalkay;Klin Wochenschr,1979

4. Management of pediatric severe traumatic brain injury: 2019 consensus and guidelines-based algorithm for first and second tier therapies;Kochanek;Pediatr Crit Care Med,2019

5. Monitoring of pulse pressure and arterial pressure waveform changes during the Valsalva maneuver by a portable ultrasound system;Seo;Conf Proc IEEE Eng Med Biol Soc,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3