Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats

Author:

Hall Edward D.

Abstract

✓ The ability of a single intravenous dose of the 21-aminosteroid U74006F to affect the development of posttraumatic spinal cord ischemia was examined in pentobarbital-anesthetized cats. After surgical preparation, each animal received a 300 gm-cm contusion injury to the exposed L-3 vertebral segment, followed by a single bolus injection of vehicle or U74006F (3 or 10 mg/kg) at 30 minutes postinjury. Spinal cord white matter blood flow (SCBF) was measured by hydrogen clearance in the dorsolateral funiculus in the center of the injured segment before and at various times up to 4 hours after injury. In vehicle-treated cats, there was a progressive decline in SCBF over the course of the experiment. By 4 hours postinjury, SCBF had decreased from a preinjury value of 15.9 ± 2.4 ml/100 gm/min (mean ± standard error of the mean) to 5.8 ± 0.8 ml/100 gm/min, representing a decline of 63.5%. In contrast, the SCBF measured 4 hours postinjury in cats that were treated with a single 10-mg/kg dose of U74006F was 13.6 ± 1.7 ml/100 gm/min (p < 0.001 vs. vehicle). Animals that received a 3-mg/kg intravenous dose of U74006F displayed a drop in SCBF equal to that of vehicle-treated cats. However, when a 3-mg/kg dose of U74006F was given to four vehicle-treated cats at the end of the experiment, a partial reversal of ischemia was recorded. Blood flow increased within 30 minutes from a mean of 4.5 ± 0.8 to 7.4 ± 1.0 ml/100 gm/min or an increase of 64.4% (p < 0.05). This rather surprising effect of U74006F in reversing posttraumatic ischemia once it has developed significantly is not shared by a 30-mg/kg intravenous dose of methylprednisolone sodium succinate (MP), although MP has previously been shown to attenuate the posttraumatic drop in SCBF when given before the SCBF drop occurs. The mechanism of action of U74006F in antagonizing posttraumatic ischemia development is believed to involve the ability of the compound to inhibit iron-dependent lipid peroxidation in central nervous system tissue.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3