Effect of naloxone on cerebral perfusion and cardiac performance during experimental cerebral ischemia

Author:

Hariri Robert J.,Supra Elizabeth L.,Roberts John Paul,Lavyne Michael H.

Abstract

✓ Transient global cerebral ischemia (TGI) was induced in awake rats using the “four-vessel” occlusion model of Pulsinelli and Brierley. Blood pressure, arterial blood gases, cerebral blood flow, and cardiac output were measured during the acute (up to 2 hours) and chronic (2 to 72 hours) postischemic time periods. Coincident with the onset of TGI, cardiac output and caudate blood flow were depressed. The former returned to baseline within 30 minutes after the conclusion of TGI, and the latter progressed to hyperemia at 12 hours (81.8 ± 4.9 vs 68.6 ± 3.9 ml/min/100 gm tissue (mean ± standard error of the mean)) and oligemia at 72 hours (45.5 ± 4.8 ml/min/100 gm tissue) post-TGI in the untreated control rats. Arterial blood gases and blood pressure were unchanged. Naloxone (1 mg/kg) given at the time of TGI or as late as 60 minutes post-TGI and every 2 hours thereafter for 24 hours or bilateral cervical vagotomy prevented the depression in cardiac output and blocked the hyperemic-oligemic cerebral blood flow pattern that was predictive of stroke in this rat model. Changes in cardiac output after TGI in this model appear to be mediated by parasympathetic pathways to the heart from the brain stem. Opiate receptor blockade probably blocks endogenous opioid peptide stimulation of these brain-stem circulatory centers, which results in inhibition of parasympathetic activity and improvement in cardiac output. The usefulness of naloxone in the treatment of experimental stroke may be a function of its ability to improve cerebral perfusion in pressure-passive cerebrovascular territories. Variations in cardiac output during experimental stroke may explain the dissimilar responses to naloxone treatment reported by other investigators of experimental stroke.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3