Surgical classification using natural language processing of informed consent forms in spine surgery

Author:

Shost Michael D.12,Meade Seth M.123,Steinmetz Michael P.23,Mroz Thomas E.23,Habboub Ghaith23

Affiliation:

1. Case Western Reserve University, School of Medicine;

2. Center for Spine Health, Neurologic Institute, Cleveland Clinic Foundation; and

3. Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio

Abstract

OBJECTIVE In clinical spine surgery research, manually reviewing surgical forms to categorize patients by their surgical characteristics is a crucial yet time-consuming task. Natural language processing (NLP) is a machine learning tool used to adaptively parse and categorize important features from text. These systems function by training on a large, labeled data set in which feature importance is learned prior to encountering a previously unseen data set. The authors aimed to design an NLP classifier for surgical information that can review consent forms and automatically classify patients by the surgical procedure performed. METHODS Thirteen thousand two hundred sixty-eight patients who underwent 15,227 surgeries from January 1, 2012, to December 31, 2022, at a single institution were initially considered for inclusion. From these surgeries, 12,239 consent forms were classified based on the Current Procedural Terminology (CPT) code, categorizing them into 7 of the most frequently performed spine surgeries at this institution. This labeled data set was split 80%/20% into train and test subsets, respectively. The NLP classifier was then trained and the results demonstrated its performance on the test data set using CPT codes to determine accuracy. RESULTS This NLP surgical classifier had an overall weighted accuracy rate of 91% for sorting consents into correct surgical categories. Anterior cervical discectomy and fusion had the highest positive predictive value (PPV; 96.8%), whereas lumbar microdiscectomy had the lowest PPV in the testing data (85.0%). Sensitivity was highest for lumbar laminectomy and fusion (96.7%) and lowest for the least common operation, cervical posterior foraminotomy (58.3%). Negative predictive value and specificity were > 95% for all surgical categories. CONCLUSIONS Utilizing NLP for text classification drastically improves the efficiency of classifying surgical procedures for research purposes. The ability to quickly classify surgical data can be significantly beneficial to institutions without a large database or substantial data review capabilities, as well as for trainees to track surgical experience, or practicing surgeons to evaluate and analyze their surgical volume. Additionally, the capability to quickly and accurately recognize the type of surgery will facilitate the extraction of new insights from the correlations between surgical interventions and patient outcomes. As the database of surgical information grows from this institution and others in spine surgery, the accuracy, usability, and applications of this model will continue to increase.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Reference16 articles.

1. Launching into clinical space with medspaCy: a new clinical text processing toolkit in Python;Eyre H,2022

2. Natural language processing in radiology: update on clinical applications;López-Úbeda P,2022

3. Advancing the state of the art in clinical natural language processing through shared tasks;Filannino M,2018

4. Machine learning in medicine: a practical introduction to natural language processing;Harrison CJ,2021

5. Using natural language processing to automatically assess feedback quality: findings from 3 surgical residencies;Ötleş E,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3