Is local hypoperfusion the reason for transient neurological deficits after STA-MCA bypass for moyamoya disease?

Author:

Mukerji Nitin,Cook Douglas J.,Steinberg Gary K.

Abstract

OBJECT Hyperperfusion is believed to be the cause of transient neurological events (TNEs) in patients with moyamoya disease (MMD) who have undergone an extracranial-to-intracranial (EC-IC) bypass between the superficial temporal artery (STA) and the middle cerebral artery (MCA). The objective of this study was to evaluate this possibility by analyzing cerebral blood flow (CBF) data obtained with thermal diffusion probes used at the authors' center. METHODS The authors examined postoperative cerebral perfusion in 31 patients with MMD who underwent a direct EC-IC STA-MCA bypass. A Hemedex Q500 flow probe was placed in the frontal lobe adjacent to the bypass and connected to a Bowman cerebral perfusion monitor, and CBF data were statistically analyzed using JMP 8.0.2 software. Seven patients experienced a TNE after surgery in the left hemisphere (that is, after left-sided surgery), manifesting as dysphasia approximately 24 hours postoperatively and which had improved by 48 hours. No TNEs were observed after right-sided surgeries. Operative and postoperative CBFs in the left side with the TNE were compared with those in the left side with no TNE and on the right side. RESULTS A detailed analysis of 64,980 minute-by-minute flow observations showed that the initial postbypass CBF was higher on the left side where the TNEs occurred. This CBF increase was followed by a widely fluctuating pattern and a statistically significant and sharp drop in perfusion (p < 0.001, mean difference of CBF between groups, paired t-test) associated with a TNE not observed in the other 2 groups. CONCLUSIONS On the basis of the authors' initial observations, an early-onset altered pattern of CBF was identified. These findings suggest local hypoperfusion as the cause of the TNEs. This hypoperfusion may originate from competing blood flows resulting from impaired cerebral autoregulation and a fluctuating flow in cerebral microcirculation.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3