Machine learning–based preoperative predictive analytics for lumbar spinal stenosis

Author:

Siccoli Alessandro1,de Wispelaere Marlies P.2,Schröder Marc L.1,Staartjes Victor E.134

Affiliation:

1. Department of Neurosurgery, Bergman Clinics, Amsterdam;

2. Department of Clinical Informatics, Bergman Clinics, Amsterdam;

3. Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Amsterdam Movement Sciences, Amsterdam, The Netherlands; and

4. Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich, University of Zurich, Switzerland

Abstract

OBJECTIVEPatient-reported outcome measures (PROMs) following decompression surgery for lumbar spinal stenosis (LSS) demonstrate considerable heterogeneity. Individualized prediction tools can provide valuable insights for shared decision-making. The authors aim to evaluate the feasibility of predicting short- and long-term PROMs, reoperations, and perioperative parameters by machine learning (ML) methods.METHODSData were derived from a prospective registry. All patients had undergone single- or multilevel mini-open facet-sparing decompression for LSS. The prediction models were trained using various ML-based algorithms to predict the endpoints of interest. Models were selected by area under the receiver operating characteristic curve (AUC). The endpoints were dichotomized by minimum clinically important difference (MCID) and included 6-week and 12-month numeric rating scales for back pain (NRS-BP) and leg pain (NRS-LP) severity and the Oswestry Disability Index (ODI), as well as prolonged surgery (> 45 minutes), extended length of hospital stay (> 28 hours), and reoperations.RESULTSA total of 635 patients were included. The average age was 62 ± 10 years, and 333 patients (52%) were male. At 6 weeks, MCID was seen in 63%, 76%, and 61% of patients for ODI, NRS-LP, and NRS-BP, respectively. At internal validation, the models predicted MCID in these variables with accuracies of 69%, 76%, and 85%, and with AUCs of 0.75, 0.79, and 0.92. At 12 months, 66%, 63%, and 51% of patients reported MCID; the observed accuracies were 62%, 74%, and 66%, with AUCs of 0.68, 0.72, and 0.79. Reoperations occurred in 60 patients (9.5%), of which 27 (4.3%) occurred at the index level. Overall and index-level reoperations were predicted with 69% and 63% accuracy, respectively, and with AUCs of 0.66 and 0.61. In 15%, a length of surgery greater than 45 minutes was observed and predicted with 78% accuracy and AUC of 0.54. Only 15% of patients were admitted to the hospital for longer than 28 hours. The developed ML-based model enabled prediction of extended hospital stay with an accuracy of 77% and AUC of 0.58.CONCLUSIONSPreoperative prediction of a range of clinically relevant endpoints in decompression surgery for LSS using ML is feasible, and may enable enhanced informed patient consent and personalized shared decision-making. Access to individualized preoperative predictive analytics for outcome and treatment risks may represent a further step in the evolution of surgical care for patients with LSS.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3