Fluid flow performance of a new siphon-control device for ventricular shunts

Author:

Horton Donald,Pollay Michael

Abstract

✓ Most available cerebrospinal fluid diversion systems utilize differential-pressure valves that often induce overshunting, resulting in complications due to the siphoning of fluid from the ventricular system when the patient is in the erect position. A new siphon-control device (SCD) was tested alone and in combination with four types of differential-pressure valves with low, medium, and high opening pressures (namely PS Medical, Heyer-Schulte, Cordis-Hakim, and Codman valves). The valve inlet and outlet pressures were measured at several fluid inflow rates between 2.0 and 50.0 ml/hr. Inlet pressure and valve resistance were determined when the outlet pressures of the differential-pressure valve or SCD were varied between 0 and −60 cm H2O. Of the differential-pressures valves tested, none provided protection against siphoning without the distal connection of the SCD. The SCD allowed all differential-pressure valves tested to maintain atmospheric pressure regardless of the outlet pressure. The SCD performs in a manner similar to the older anti-siphon device, but with some improvements in design and construction. The results of this investigation suggest that the increased resistance due to the inline SCD is not functionally significant when added to the conventional valve systems with low opening pressure.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3