Characterization of periventricular edema in normal-pressure hydrocephalus by measurement of water proton relaxation times

Author:

Tamaki Norihiko,Shirakuni Takayuki,Ehara Kazumasa,Matsumoto Satoshi

Abstract

✓ The magnetic resonance longitudinal relaxation time (T1) and transverse relaxation time (T2) of the water proton of the periventricular white and cortical gray matter were measured for 17 control patients and 21 patients with suspected normal-pressure hydrocephalus (NPH). Of the latter group, 14 showed good response to shunting (true-NPH group) and seven showed no response (false-NPH group). In the true-NPH group, both the T1 and the T2 of the periventricular white matter were significantly prolonged compared to the control values, and slowly shortened after cerebrospinal fluid (CSF) shunting. The true-NPH group showed significantly longer T1 and T2 of the white matter than did the false-NPH group. The T1 and T2 of the white matter were longer than those of the gray matter in this group, which was the reverse of the relationship observed in the control patients. In the white matter of the false-NPH group, there was a significant prolongation of T1 only; no difference was seen in the T2 compared to control values. There was no change in either T1 or T2 of this region after CSF shunting. The false-NPH group showed no significant difference in either T1 or T2 between the white and the gray matter. There was no difference in either T1 or T2 of the gray matter between the false-NPH and control groups or between preshunt and postshunt measurements in each patient group. It is suggested that a distinction between true- and false-NPH, which cannot be made from the radiographic appearance alone, may be possible from measurement of relaxation times. The mechanism of varied relaxation behavior between two entities may be explained by a difference in properties of the biological water and its environment.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3