Author:
Ushiwata Issei,Ushiki Tatsuo
Abstract
✓ The three-dimensional cytoarchitecture of the smooth muscles and pericytes of rat cerebral blood vessels was studied by scanning electron microscopy after removing extracellular connective tissue matrices with the KOH-collagenase digestion method. The tunica media of major intracranial arteries such as the internal carotid, vertebral, basilar, and other cerebral arteries measuring more than 100 µm in outer diameter consisted of spindle-shaped smooth-muscle cells arranged circularly to the long axis of the vessel. Muscle cells at the branching points, however, showed a variety of shapes, sizes, and arrangements. As the vessel size decreased, smooth-muscle cells showed bi- or trifurcations at the cell poles. In the precapillary arterioles, smooth-muscle cells which had helically surrounded the endothelial tubes had bulging cell bodies with various cytoplasmic processes extending from the cell poles. Distinct specializations presumed to be sphincters were not found on the arteries or arterioles. Pericytes of the capillary had become extended along the vessel axis, having fusiform cell bodies with longitudinally oriented long cytoplasmic processes. Cells located periendothelially in the venules and veins were stellate in shape with many cytoplasmic processes which were interwoven to form complicated cellular networks around the endothelial tube.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献