Continuous monitoring of intracranial pressure with a miniaturized fiberoptic device

Author:

Ostrup Richard C.,Luerssen Thomas G.,Marshall Lawrence F.,Zornow Mark H.

Abstract

✓ A No. 4 French fiberoptic catheter initially developed as an intravascular pressure sensor was incorporated into a system to be used as an intracranial pressure (ICP) monitor. Initially, a series of acute and chronic animal experiments carried out in the rabbit and pig, respectively, demonstrated the reliability and safety of the device. Subsequently, this new monitor was compared to a concurrently functioning ICP monitor in 15 adult and five pediatric patients. This clinical experience also confirmed the safety, accuracy, and reliability of the device. Since these initial studies, this monitor has been used to routinely measure ICP in a large number of adult and pediatric patients. The monitor has functioned well, and there have been no complications related to its use except for an occasional problem with breakage of the optic fiber as a result of patient movement or nursing maneuvers, which has been easily corrected by replacement of the probe. As nursing personnel and ancillary services have become familiar with this new monitor, breakage has not been a problem. This new device can be placed into the ventricular system, the brain parenchyma, or the subdural space, and appears to offer substantial advantages over other monitors presently in use.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. History of Traumatic Brain Injury and the Evolution of Neuromonitoring: An Overview;Hot Topics in Acute Care Surgery and Trauma;2024

2. Brain edema;Neurological and Neurosurgical Emergencies;2024

3. Fiber-Optic Intracranial Pressure Monitoring System Using Wi-Fi—An In Vivo Study;Neurosurgery;2022-12-01

4. Elevated intraspinal pressure in traumatic spinal cord injury is a promising therapeutic target;Neural Regeneration Research;2022

5. Optical Fiber Sensors;Biomedical Optical Sensors;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3