Quantitative study of microvessel ultrastructure in human peritumoral brain tissue

Author:

Stewart Patricia A.,Hayakawa Kay,Farrell Catherine L.,Del Maestro Rolando F.

Abstract

✓ The form and function of blood vessels are determined by the cells that constitute their microenvironment. Brain tissue around tumors contains varying numbers of tumor cells that could influence local capillaries to lose their blood-brain barrier (BBB), as they do in the tumor itself. Microvascular permeability cannot be measured directly in humans but can be inferred from a knowledge of vessel ultrastructure. The authors have examined the vascular ultrastructure associated with the BBB in human peritumoral brain tissue for evidence of BBB compromise and to correlate BBB features with the cellular components of the vessel microenvironment. Light microscopic examination of brain tissue samples in patients with primary brain tumors showed that the tissue lying beyond the visible edge of the tumor ranged from essentially normal to grossly infiltrated with tumor cells. Although some of the vessels were structurally normal, the microvessels as a group had elongated junctional clefts (unfused regions) and an increase in the density of endothelial vesicles. Furthermore, the cleft index (the percentage of the junctional profile that is unfused) varied directly with the local cell density. A subpopulation of vessels enveloped by a layer of tumor cells was grossly abnormal. However, vessels that were not immediately invested by tumor cells also showed some abnormalities. It is concluded that tumor cells infiltrating peritumoral brain tissue cause blood vessels to take on some of the structural characteristics of leaky vessels. Since direct contact is not required, and since the degree of abnormality correlates with the number of tumor cells in the environment, the authors suggest that this inductive influence is exerted over a distance and is dependent on the concentration of the inducing factors.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3