Author:
Takeuchi Hiroaki,Hashimoto Norichika,Kitai Ryuhei,Kubota Toshihiko,Kikuta Ken-ichiro
Abstract
Object
Glioblastomas multiforme (GBM) contain a higher number of α-smooth muscle actin (SMA)–positive vascular smooth muscle cells (VSMCs) than those in the respective normal neuronal tissue. The role of VSMCs during angiogenesis is unclear, and it is also uncertain whether and to what extent angiogenic factors might be involved in GBM VSMCs. In GBMs, the contribution of VSMCs in angiogenesis accompanying endothelial proliferation and the correlation of VSMC proliferation with vascular endothelial growth factor (VEGF) expression were examined using an immunohistochemical method.
Methods
The examined material, including surrounding brain tissue, came from 12 cases (6 men and 6 women) with classic GBM. Microvessel densities (MVDs) of CD31-immunoreactive vessels (CD31-MVD) and SMA-immunoreactive vessels (SMA-MVD) were obtained in areas selected from white matter, boundary, tumor (concentrated area of tumor cells), and perinecrosis. Subsequently, the SMA-MVD/CD31-MVD (SMA/CD31) rate, representing the percentage of vessels with VSMCs in the region, was calculated in each area. The VEGF immunoreactivity of tumor cells was examined, and cases were divided into 2 groups: < 30% VEGF expression of tumor cells (low VEGF group) and > 30% VEGF expression of tumor cells (high VEGF group).
Results
The SMA/CD31 rate of the boundary was significantly lower than that of the tumor (p < 0.005) and perinecrosis (p < 0.001). The SMA/CD31 rate of the high VEGF group was significantly higher than that of the low VEGF group (p < 0.05) in the tumor.
Conclusions
In GBMs, the transformation and proliferation of VSMCs may accompany neovascularization and may also be induced by angiogenic factors.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献