Author:
Sudhakar Vivek,Mahmoodi Amin,Bringas John R.,Naidoo Jerusha,Kells Adrian,Samaranch Lluis,Fiandaca Massimo S.,Bankiewicz Krystof S.
Abstract
OBJECTIVESuccessful convection-enhanced delivery of therapeutic agents to subcortical brain structures requires accurate cannula placement. Stereotactic guiding devices have been developed to accurately target brain nuclei. However, technologies remain limited by a lack of MRI compatibility, or by devices’ size, making them suboptimal for direct gene delivery to brain parenchyma. The goal of this study was to validate the accuracy of a novel frameless skull-mounted ball-joint guide array (BJGA) in targeting the nonhuman primate (NHP) brain.METHODSFifteen MRI-guided cannula insertions were performed on 9 NHPs, each targeting the putamen. Optimal trajectories were planned on a standard MRI console using 3D multiplanar baseline images. After cannula insertion, the intended trajectory was compared to the final trajectory to assess deviation (euclidean error) of the cannula tip.RESULTSThe average cannula tip deviation was 1.18 ± 0.60 mm (mean ± SD) as measured by 2 independent reviewers. Topological analysis showed a superior, posterior, and rightward directional bias, and the intra- and interclass correlation coefficients were > 0.85, indicating valid and reliable intra- and interobserver evaluation.CONCLUSIONSThe data demonstrate that the BJGA can be used to reliably target subcortical brain structures by using MRI guidance, with accuracy comparable to current frameless stereotactic systems. The size and versatility of the BJGA, combined with a streamlined workflow, allows for its potential applicability to a variety of intracranial neurosurgical procedures, and for greater flexibility in executing MRI-guided experiments within the NHP brain.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献