Affiliation:
1. Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia;
2. Denver International Spine Center, Presbyterian St. Luke’s/Rocky Mountain Hospital for Children, Denver, Colorado;
3. NuVasive, Inc., San Diego, California;
4. Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York; and
5. Department of Neurological Surgery, University of California, San Francisco, California
Abstract
OBJECTIVEProximal junctional kyphosis (PJK) is, in part, due to altered segmental biomechanics at the junction of rigid instrumented spine and relatively hypermobile non-instrumented adjacent segments. Proper application of posteriorly anchored polyethylene tethers (i.e., optimal configuration and tension) may mitigate adjacent-segment stress and help prevent PJK. The purpose of this study was to investigate the impact of different tether configurations and tensioning (preloading) on junctional range-of-motion (ROM) and other biomechanical indices for PJK in long instrumented spine constructs.METHODSUsing a validated finite element model of a T7–L5 spine segment, testing was performed on intact spine, a multilevel posterior screw-rod construct (PS construct; T11–L5) without tether, and 15 PS constructs with different tether configurations that varied according to 1) proximal tether fixation of upper instrumented vertebra +1 (UIV+1) and/or UIV+2; 2) distal tether fixation to UIV, to UIV−1, or to rods; and 3) use of a loop (single proximal fixation) or weave (UIV and/or UIV+1 fixation in addition to UIV+1 and/or UIV+2 proximal attachment) of the tether. Segmental ROM, intradiscal pressure (IDP), inter- and supraspinous ligament (ISL/SSL) forces, and screw loads were assessed under variable tether preload.RESULTSPS construct junctional ROM increased abruptly from 10% (T11–12) to 99% (T10–11) of baseline. After tethers were grouped by most cranial proximal fixation (UIV+1 vs UIV+2) and use of loop versus weave, UIV+2 Loop and/or Weave most effectively dampened junctional ROM and adjacent-segment stress. Different distal fixation and use of loop versus weave had minimal effect. The mean segmental ROM at T11–12, T10–11, and T9–10, respectively, was 6%, 40%, and 99% for UIV+1 Loop; 6%, 44%, and 99% for UIV+1 Weave; 5%, 23%, and 26% for UIV+2 Loop; and 5%, 24%, and 31% for UIV+2 Weave.Tethers shared loads with posterior ligaments; consequently, increasing tether preload tension reduced ISL/SSL forces, but screw loads increased. Further attenuation of junctional ROM and IDP reversed above approximately 100 N tether preload, suggesting diminished benefit for biomechanical PJK prophylaxis at higher preload tensioning.CONCLUSIONSIn this study, finite element analysis demonstrated UIV+2 Loop and/or Weave tether configurations most effectively mitigated adjacent-segment stress in long instrumented spine constructs. Tether preload dampened ligament forces at the expense of screw loads, and an inflection point (approximately 100 N) was demonstrated above which junctional ROM and IDP worsened (i.e., avoid over-tightening tethers). Results suggest tether configuration and tension influence PJK biomechanics and further clinical research is warranted.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Reference90 articles.
1. Hospital readmission after spine fusion for adult spinal deformity;Schairer;Spine (Phila Pa 1976),2013
2. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery;Smith;J Neurosurg Spine,2016
3. Alignment risk factors for proximal junctional kyphosis and the effect of lower thoracic junctional tethers for adult spinal deformity;Buell;World Neurosurg
4. Incidence, risk factors, and natural course of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up;Yagi;Spine (Phila Pa 1976),2012
5. Radiographic outcome and complications after single-level lumbar extended pedicle subtraction osteotomy for fixed sagittal malalignment: a retrospective analysis of 55 adult spinal deformity patients with a minimum 2-year follow-up;Buell;J Neurosurg Spine