Use of adhesive cranial bone flap fixation without hardware to improve mechanical strength, resist cerebrospinal fluid leakage, and maintain anatomical alignment: a laboratory study

Author:

Smith Timothy R.123,Foley Kevin T.4,Boruah Sourabh56,Slotkin Jonathan R.7,Woodard Eric8,Lazor John B.9,Cavaleri Christy6,Brown Michael C.6,McDonough Brittany6,Hess Brian6,Van Citters Douglas W.5

Affiliation:

1. Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts;

2. Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts;

3. Harvard Medical School, Boston, Massachusetts;

4. Semmes-Murphey Clinic and Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee;

5. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire;

6. RevBio, Inc., Lowell, Massachusetts;

7. Department of Neurosurgery, Geisinger Health System, Danville, Pennsylvania;

8. Department of Neurosurgery, New England Baptist Hospital, Boston, Massachusetts; and

9. Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts

Abstract

OBJECTIVE Titanium plates and screws (TPS) are the current standard of care for fixation of cranial bone flaps. These materials have been used for decades but have known potential complications, including flap migration, bone resorption/incomplete osseous union, hardware protrusion, cosmetic deformity, wound infection/dehiscence, and cerebrospinal fluid (CSF) leakage. This study evaluated the efficacy of a novel mineral-organic bone adhesive (Tetranite) for cranial bone flap fixation. METHODS Craniotomy bone flaps created in human cadaveric skulls were tested under quasistatic and impact loading in the following conditions: 1) uncut skull; 2) bone flaps fixated with TPS alone; and 3) bone flaps fixated with bone adhesive alone. All fixative surgical procedures were performed by a group of 16 neurosurgeons in a simulated surgical environment. The position of adhesive-fixated cranial bone flaps was measured using computed tomography and compared with their original native location. The resistance of adhesive-fixated cranial bone flaps to simulated CSF leakage was also evaluated. Because there was a gap around the circumference of the TPS-fixated specimens that was visible to the naked eye, pressurized CSF leak testing was not attempted on them. RESULTS Adhesive-fixated bone flaps showed significantly stiffer and stronger quasistatic responses than TPS-fixated specimens. The strength and stiffness of the adhesive-fixated specimens were not significantly different from those of the uncut native skulls. Total and plastic deflections under 6-J impact were significantly less for adhesive-fixed bone flaps than TPS. There were no significant differences in any subthreshold impact metrics between the adhesive-fixed and native specimens at both 6-J and 12-J impact levels, with 1 exception. Plastic deflection at 6-J impact was significantly less in adhesive-fixated bone flaps than in native specimens. The energy to failure of the adhesive-fixated specimens was not significantly different from that of the native specimens. Time since fixation (20 minutes vs 10 days) did not significantly affect the impact failure properties of the adhesive-fixated specimens. Of the 16 adhesive-fixated craniotomy specimens tested, 14 did not leak at pressures as high as 40 mm Hg. CONCLUSIONS The neurosurgeons in this study had no prior exposure or experience with the bone adhesive. Despite this, improved resistance to CSF egress, superior mechanical properties, and better cosmetic outcomes were demonstrated with bone adhesive compared with TPS.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3