Antithrombotic, procoagulant, and fibrinolytic mechanisms in cerebral circulation: implications for brain injury and protection

Author:

Zlokovic Berislav V.

Abstract

Maintaining a delicate balance among anticoagulant, procoagulant, and fibrinolytic pathways in the cerebral microcirculation is of major importance for normal cerebral blood flow. Under physiological conditions and in the absence of provocative stimuli, the anticoagulant and fibrinolytic pathways prevail over procoagulant mechanisms. Blood clotting is essential to minimize bleeding and to achieve hemostasis; however, excessive clotting contributes to thrombosis and may predispose the brain to infarction and ischemic stroke. Conversely, excessive bleeding due to enhanced anticoagulatory and fibrinolytic mechanisms could predispose the brain to hemorrhagic stroke. Recent studies in the author's laboratory indicate that brain capillary endothelium in vivo produces thrombomodulin (TM), a key cofactor in the TM-protein C system that is of major biological significance to the antithrombotic properties of the blood-brain barrier (BBB). The BBB endothelium also expresses tissue plasminogen activator (tPA), a key protein in fibrinolysis, and its rapid inhibitor, plasminogen activator inhibitor (PAI-1). The procoagulant tissue factor is normally dormant at the BBB. There is a vast body of clinical evidence to document the importance of hemostasis in the pathophysiology of brain injury. In particular, functional changes caused by major stroke risk factors in the TM-protein C, tPA/PAI-1, and tissue factor systems at the BBB may result in large and debilitating infarctions following an ischemic insult. Thus, correcting this hemostatic imbalance could ameliorate drastic CBF reductions at the time of ischemic insult, ultimately resulting in brain protection. Delineation of the molecular mechanisms of BBB-mediated hemostasis will likely contribute to future stroke prevention efforts and brain protection strategies.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3