Author:
North Richard B.,McNamee J. Paul,Wu Lee,Piantadosi Steven
Abstract
Artificial neural networks are used increasingly in applications such as graphic pattern recognition, which are difficult to address with conventional statistical methods. In the management of chronic pain, graphic methods are used routinely; patients describe their patterns of pain using “pain drawings.” The authors have previously reported an automated, computerized pain drawing methodology, which has been used by patients with implanted spinal cord stimulators to represent a technical goal of the procedure, the overlap of pain by stimulation paresthesias. Standard linear discriminant statistical methods have shown associations between stimulation parameters and electrode positions as independent variables and technical outcome and relief of pain as dependent variables.
The authors have applied artificial neural networks to the problem of optimizing implanted stimulator adjustment. A data set of 3000 electrode combinations obtained in 41 patients was used to develop a linear discriminant statistical model on a mainframe computer and to train artificial neural networks on a personal computer. The performance of these two systems on a new data set obtained in 10 patients was compared with that of human “experts.” The best neural network model was marginally better than the linear discriminant model; the variance in patient ratings was predicted by these models to a degree that the human experts were unable to predict. The authors anticipate expanding the role of these models and incorporating them into expert sytems for clinical use.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献