Optimized magnetic resonance image-guided stereotaxis: a technique with validation based on the anterior commissure-posterior commissure line

Author:

diPierro Charles G.,Francel Paul C.,Jackson Theodore R.,Kamiryo Toshifumi,Laws Edward R.

Abstract

Some of the earliest successful frame-based stereotactic interventions directed toward the thalamus and basal ganglia depended on identifying the anterior commissure (AC) and posterior commissure (PC) in a sagittal venticulogram and defining the intercommissural line that connects them in the midsagittal plane. The AC-PC line became the essential landmark for the localization of neuroanatomical targets in the basal ganglia and diencephalon and for relating them to stereotactic atlases. Stereotactic functional neurosurgery has come to rely increasingly on magnetic resonance (MR) imaging guidance, and methods for accurately determining the AC-PC line on MR imaging are being developed. Our technique uses MR sequences that minimize geometric distortion and registration error, thereby maximizing accuracy in AC-PC line determinations from axially displayed MR data. The techniques are based on our experience with the Leksell G-frame, but can be generalized to other MR imaging-based stereotactic systems. This methodology has been used in a series of 62 stereotactic procedures in 47 adults (55 pallidotomies and seven thalamotomies) with preliminary results equivalent or superior to results reported using microelectrode recordings. The measurements of the AC-PC line reported here compare favorably with those based on ventriculography and computerized tomography previously reported. The methodology reported here is critical in maintaining the accuracy and utility of MR imaging as its role in modern stereotaxy expands. Accurate parameters such as these aid in ensuring the safety, efficacy, and reproducibility of MR-guided stereotactic procedures.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3