Long noncoding RNA profile of the intracranial artery in patients with moyamoya disease

Author:

Mamiya Takashi1,Kanamori Fumiaki1,Yokoyama Kinya1,Ota Akinobu2,Karnan Sivasundaram2,Uda Kenji1,Araki Yoshio1,Maesawa Satoshi1,Yoshikawa Kazuhiro3,Saito Ryuta1

Affiliation:

1. Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya;

2. Department of Biochemistry, Aichi Medical University School of Medicine, and

3. Division of Research Creation and Biobank, Research Creation Support Center, Aichi Medical University, Nagakute, Japan

Abstract

OBJECTIVE Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of the internal carotid artery (ICA) and secondary formation of collateral vessels. Revascularization surgery is performed in patients with MMD to prevent stroke; however, the pathogenesis of MMD remains unknown. Recently, long noncoding RNAs (lncRNAs) have been found to play a key role in gene regulation and are implicated in various vascular diseases. However, the lncRNA expression profile in MMD lesions has not been investigated. In this study the authors aimed to determine the characteristics of lncRNA expression in MMD lesions. METHODS The authors collected microsamples of the middle cerebral artery (MCA) from patients with MMD (n = 21) and patients with control conditions (n = 11) who underwent neurosurgical treatment. Using microarray experiments, the authors compared the profiles of lncRNA expression in the MCAs of the MMD and control patient groups and identified differentially expressed lncRNAs (fold change > 2, q < 0.05). In addition, the neighboring coding genes, whose transcription can be regulated in cis by the identified differentially expressed lncRNAs, were investigated and Gene Ontology (GO) analysis was applied to predict associated biological functions. RESULTS The authors detected 308 differentially expressed lncRNAs (fold change > 2, q < 0.05), including 306 upregulated and 2 downregulated lncRNAs in the MCA from patients with MMD. Regarding the prediction of biological function, GO analyses with possible coding genes whose transcription was regulated in cis by the identified differentially expressed lncRNAs suggested involvement in the antibacterial humoral response, T-cell receptor signaling pathway, positive regulation of cytokine production, and branching involved in blood vessel morphogenesis. CONCLUSIONS The profile of lncRNA expression in MMD lesions was different from that in the normal cerebral artery, and differentially expressed lncRNAs were identified. This study provides new insights into the pathophysiology of MMD.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference34 articles.

1. Abnormal cerebrovascular network related to the internal cartoid arteries;Nishimoto A,1968

2. Progress in moyamoya disease;Shang S,2020

3. Prevalence and clinicoepidemiological features of moyamoya disease in Japan: findings from a nationwide epidemiological survey;Kuriyama S,2008

4. Paediatric moyamoya in mainland France: a comprehensive survey of academic neuropaediatric centres;Kossorotoff M,2012

5. Genetic and clinical characteristics of Moyamoya disease in Europeans;Krischek B,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3