Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury

Author:

Ito Junki,Marmarou Anthony,Barzó Pál,Fatouros Panos,Corwin Frank

Abstract

✓ The objective of this study was to use diffusion-weighted magnetic resonance imaging (DWI) to help detect the type of edema that develops after experimental trauma and trauma coupled with hypotension and hypoxia (THH). Reduction in the apparent diffusion coefficients (ADCs) is thought to represent cytotoxic edema. In a preliminary series of experiments, the infusion edema model and middle cerebral artery occlusion models were used to confirm the direction of ADC change in response to purely extracellular and cytotoxic edema, respectively. The ADCs increased (p < 0.05) in the case of extracellular edema and decreased (p < 0.001) in cytotoxic edema. Following these initial experiments, a new impact acceleration model was used to induce traumatic brain injury. Thirty-six adult Sprague-Dawley rats were separated into four groups: sham, trauma alone, hypoxia and hypotension (HH), and THH. Following trauma, a 30-minute insult of hypoxia (PaO2 of 40 mm Hg) and hypotension (mean arterial blood pressure (MABP) of 30 mm Hg) were imposed and the animals were resuscitated. The DWI was carried out at four 1-hour intervals postinjury, and MABP, intracranial pressure (ICP), cerebral perfusion pressure (CPP), and cerebral blood flow (CBF) were monitored. The ADCs in the control and HH groups remained unchanged. The ADCs in the THH group rapidly decreased from a control level of 0.68 ± 0.05 × 10−3 mm2/second to 0.37 ± 0.09 3 10−3 mm2/second by 3 hours posttrauma (p < 0.001). In this group, the decreased CBF and CPP during secondary insult remained low despite resuscitation, with the ICP increasing to 56 6 7 mm Hg by 3 hours. In the trauma alone group, the rise in ICP reached a maximum value (28 ± 3 mm Hg) at 30 minutes with a significant and sustained increase in CBF despite a gradual decrease in CPP. The ADCs in this group were not significantly reduced. The data lead the authors to suggest that the rise in ICP following severe trauma coupled with secondary insult in this model is predominately caused by cytotoxic edema and that ischemia plays a major role in the development of brain edema after head injury.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 241 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3