Effect of anti—rat interleukin-6 antibody after spinal cord injury in the rat: inducible nitric oxide synthase expression, sodium- and potassium-activated, magnesium-dependent adenosine-5′-triphosphatase and superoxide dismutase activation, and ultrastructural changes

Author:

Tuna Metin,Polat Sait,Erman Tahsin,Ildan Faruk,Göçer A. Iskender,Tuna Nusa,Tamer Lülüfer,Kaya Mehmet,Çetinalp Erdal

Abstract

Object. The inflammatory cells that accumulate at the damaged site after spinal cord injury (SCI) may secrete interleukin-6 (IL-6), a mediator known to induce the expression of inducible nitric oxide synthase (iNOS). Any increased production of NO by iNOS activity would aggravate the primary neurological damage in SCI. If this mechanism does occur, the direct or indirect effects of IL-6 antagonists on iNOS activity should modulate this secondary injury. In this study, the authors produced spinal cord damage in rats and applied anti—rat IL-6 antibody to neutralize IL-6 bioactivity and to reduce iNOS. They determined the spinal cord tissue activities of Na+-K+/Mg++ adenosine-5′-triphosphatase (ATPase) and superoxide dismutase, evaluated iNOS immunoreactivity, and examined ultrastructural findings to assess the results of this treatment. Methods. Seventy rats were randomly allocated to four groups. Group I (10 rats) were killed to provide normal spinal cord tissue for testing. In Group II 20 rats underwent six-level laminectomy for the effects of total laminectomy alone to be determined. In Group III 20 rats underwent six-level T2–7 laminectomy and SCI was produced by extradural compression of the exposed cord. The same procedures were performed in the 20 Group IV rats, but these rats also received one (2 µg) intraperitoneal injection of anti—rat IL-6 antibody immediately after the injury and a second dose 24 hours posttrauma. Half of the rats from each of Groups II through IV were killed at 2 hours and the other half at 48 hours posttrauma. The exposed cord segments were immediately removed and processed for analysis. Conclusions. The results showed that neutralizing IL-6 bioactivity with anti—rat IL-6 antibody significantly attenuates iNOS activity and reduces secondary structural changes in damaged rat spinal cord tissue.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3