Harvested human neurons engineered as live nervous tissue constructs: implications for transplantation

Author:

Huang Jason H.1,Zager Eric L.2,Zhang Jun2,Groff Robert F.2,Pfister Bryan J.2,Cohen Akiva S.3,Grady M. Sean2,Maloney-Wilensky Eileen2,Smith Douglas H.2

Affiliation:

1. Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York;

2. Department of Neurosurgery, University of Pennsylvania, Hospital of the University of Pennsylvania and

3. Department of Pediatrics, University of Pennsylvania, The Children's Hospital of Philadelphia, Pennsylvania

Abstract

Object Although neuron transplantation to repair the nervous system has shown promise in animal models, there are few practical sources of viable neurons for clinical application and insufficient approaches to bridge extensive nerve damage in patients. Therefore, the authors sought a clinically relevant source of neurons that could be engineered into transplantable nervous tissue constructs. The authors chose to evaluate human dorsal root ganglion (DRG) neurons due to their robustness in culture. Methods Cervical DRGs were harvested from 16 live patients following elective ganglionectomies, and thoracic DRGs were harvested from 4 organ donor patients. Following harvest, the DRGs were digested in a dispase–collagenase treatment to dissociate neurons for culture. In addition, dissociated human DRG neurons were placed in a specially designed axon expansion chamber that induces continuous mechanical tension on axon fascicles spanning 2 populations of neurons originally plated ∼ 100 μm apart. Results The adult human DRG neurons, positively identified by neuronal markers, survived at least 3 months in culture while maintaining the ability to generate action potentials. Stretch-growth of axon fascicles in the expansion chamber occurred at the rate of 1 mm/day to a length of 1 cm, creating the first engineered living human nervous tissue constructs. Conclusions These data demonstrate the promise of adult human DRG neurons as an alternative transplant material due to their availability, viability, and capacity to be engineered. Also, these data show the feasibility of harvesting DRGs from living patients as a source of neurons for autologous transplant as well as from organ donors to serve as an allograft source of neurons.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3