Affiliation:
1. Baylor College of Medicine and
2. The University of Texas Health Science Center, San Antonio, Texas
3. The University of Texas Health Science Center, Houston; and
Abstract
Object
Increasing PaO2 can increase brain tissue PO2 (PbtO2). Nevertheless, the small increase in arterial O2 content induced by hyperoxia does not increase O2 delivery much, especially when cerebral blood flow (CBF) is low, and the effectiveness of hyperoxia as a therapeutic intervention remains controversial. The purpose of this study was to examine the role of regional (r)CBF at the site of the PO2 probe in determining the response of PbtO2 to induced hyperoxia.
Methods
The authors measured PaO2 and PbtO2 at baseline normoxic conditions and after increasing inspired O2 concentration to 100% on 111 occasions in 83 patients with severe traumatic brain injury in whom a stable xenon–enhanced computed tomography measurement of CBF was available. The O2 reactivity was calculated as the change in PbtO2 × 100/change in PaO2.
Results
The O2 reactivity was significantly different (p < 0.001) at the 5 levels of rCBF (<10, 11–15, 16–20, 21–40, and > 40 ml/100 g/min). When rCBF was < 20 ml/100 g/min, the increase in PbtO2 induced by hyperoxia was very small compared with the increase that occurred when rCBF was > 20 ml/100 g/min.
Conclusions
Although the level of CBF is probably only one of the factors that determines the PbtO2 response to hyperoxia, it is apparent from these results that the areas of the brain that would most likely benefit from improved oxygenation are the areas that are the least likely to have increased PbtO2.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献