Inhibitory effect of gap junction blockers on cerebral vasospasm

Author:

Hong Tao,Wang Yang,Wang Hai-tao,Wang Huan

Abstract

Object The gap junction is important in the propagation of dilation/constriction signals along vessels for coordinated behavior in control of vascular tone. The authors hypothesized that gap junctions might play a role in cerebral vasospasm following subarachnoid hemorrhage (SAH). The aims of the present study were to investigate the role of gap junctions and to observe the potential therapeutic efficacy of gap junction blockers in cerebral vasospasm in vitro and in vivo. Methods For the in vitro investigation, the effect of heptanol on the oxyhemoglobin (HbO2)-induced contraction of isolated rabbit basilar arteries (BAs) was observed by using an isometric tension-recording method. For the in vivo experiments, the potential therapeutic efficacy of heptanol and carbenoxolone was surveyed after it was given intravenously in the rabbit double-hemorrhage model. Light microscopy was performed to assess the morphological changes in the arteries examined. Results For the in vitro method, heptanol significantly inhibited the sustained contraction induced both by HbO2 and K+ in the BA rings. The magnitude of the heptanol-induced relaxation was dose dependent. The inhibitory effect of heptanol on the K+-induced vasoconstriction was weaker than that on the HbO2-induced constriction. After arterial rings were pretreated for 10 minutes, heptanol significantly decreased their responses to the HbO2-induced contraction. For the in vivo method, heptanol and carbenoxolone significantly decreased the narrowing of BAs when given intravenously in the rabbit double-hemorrhage model. In both treated groups, the diameters of the arteries had not changed significantly on Day 7 compared with those of the arteries in the SAH + vehicle and the SAH-only group. Conclusions Heptanol and carbenoxolone significantly inhibited the experimental cerebral vasospasm both in vitro and in vivo. Blockage of gap junctions is a probable candidate for a new approach in the treatment of cerebral vasospasm. Gap junctions may play a pathophysiological role in cerebral vasospasm.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3