Affiliation:
1. Departments of Neuroscience
2. Neurosurgery, and
3. Radiology, Erasmus MC, Rotterdam, The Netherlands; and
4. Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, The Netherlands
Abstract
OBJECTIVE
Given the high-risk nature of arteriovenous malformation (AVM) resections, accurate pre- and intraoperative imaging of the vascular morphology is a crucial component that may contribute to successful surgical results. Surprisingly, current gold standard imaging techniques for surgical guidance of AVM resections are mostly preoperative, lacking the necessary flexibility to cater to intraoperative changes. Micro-Doppler imaging is a unique high-resolution technique relying on high frame rate ultrasound and subsequent Doppler processing of microvascular hemodynamics. In this paper the authors report the first application of intraoperative, coregistered magnetic resonance/computed tomograpy, micro-Doppler imaging during the neurosurgical resection of an AVM in the parietal lobe.
OBSERVATIONS
The authors applied intraoperative two-dimensional and three-dimensional (3D) micro-Doppler imaging during resection and were able to identify key anatomical features including draining veins, supplying arteries and microvasculature in the nidus itself. Compared to the corresponding preoperative 3D-digital subtraction angiography (DSA) image, the micro-Doppler images could delineate vascular structures and visualize hemodynamics with higher, submillimeter scale detail, even at significant depths (>5 cm). Additionally, micro-Doppler imaging revealed unique microvascular morphology of surrounding healthy vasculature.
LESSONS
The authors conclude that micro-Doppler imaging in its current form has clear potential as an intraoperative counterpart to preoperative contrast-dependent DSA, and the microvascular details it provides could build new ground to further study cerebrovascular pathophysiology.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献