Discrete cerebral hypothermia in the management of traumatic brain injury: a randomized controlled trial

Author:

Harris Odette A.1,Muh Carrie R.1,Surles Monique C.1,Pan Yi2,Rozycki Grace3,Macleod Jana3,Easley Kirk2

Affiliation:

1. Departments of Neurosurgery and

2. Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia

3. Surgery, Emory University School of Medicine; and

Abstract

Object Hypothermia has been extensively evaluated in the management of traumatic brain injury (TBI), but no consensus as to its effectiveness has yet been reached. Explanatory hypotheses include a possible confounding effect of the neuroprotective benefits by adverse systemic effects. To minimize the systemic effects, the authors evaluated a selective cerebral cooling system, the CoolSystem Discrete Cerebral Hypothermia System (a “cooling cap”), in the management of TBI. Methods A prospective randomized controlled clinical trial was conducted at Grady Memorial Hospital, a Level I trauma center. Adults admitted with severe TBI (Glasgow Coma Scale [GCS] score ≤ 8) were eligible. Patients assigned to the treatment group received the cooling cap, while those in the control group did not. Patients in the treatment group were treated with selective cerebral hypothermia for 24 hours, then rewarmed over 24 hours. Their intracranial and bladder temperatures, cranial-bladder temperature gradient, Glasgow Outcome Scale (GOS) and Functional Independence Measure (FIM) scores, and mortality rates were evaluated. The primary outcome was to establish a cranial-bladder temperature gradient in those patients with the cooling cap. The secondary outcomes were mortality and morbidity per GOS and FIM scores. Results The cohort comprised 25 patients (12 in the treatment group, 13 controls). There was no significant intergroup difference in demographic data or median GCS score at enrollment (treatment group 3.0, controls 3.0; p = 0.7). After the third hour of the study, the mean intracranial temperature of the treatment group was significantly lower than that of the controls at all time points except Hours 4 (p = 0.08) and 6 (p = 0.08). However, the target intracranial temperature of 33°C was achieved in only 2 patients in the treatment group. The mean intracranial-bladder temperature gradient was not significant for the treatment group (p = 0.07) or the controls (p = 0.67). Six (50.0%) of 12 patients in the treatment group and 4 (30.8%) of 13 in the control group died (p = 0.43). The medians of the maximum change in GOS and FIM scores during the study period (28 days) for both groups were 0. There was no significant difference in complications between the groups (p value range 0.20–1.0). Conclusions The cooling cap was not effective in establishing a statistically significant cranial-bladder temperature gradient or in reaching the target intracranial temperature in the majority of patients. No significant difference was achieved in mortality or morbidity between the 2 groups. As the technology currently stands, the Discrete Cerebral Hypothermia System cooling cap is not beneficial for the management of TBI. Further refinement of the equipment available for the delivery of selective cranial cooling will be needed before any definite conclusions regarding the efficacy of discrete cerebral hypothermia can be reached.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3