Longitudinal anterior-to-posterior shift of collateral channels in patients with moyamoya disease: an implication for its hemorrhagic onset

Author:

Yamamoto Shusuke,Hori Satoshi,Kashiwazaki Daina,Akioka Naoki,Kuwayama Naoya,Kuroda Satoshi

Abstract

OBJECTIVEThis study aimed to assess longitudinal changes in the collateral channels originating from the lenticulostriate artery (LSA), posterior communicating artery (PCoA), and anterior and posterior choroidal arteries (AChA and PChA, respectively) during disease progression and/or aging. The impact of collateral channels on onset type was also examined.METHODSThis study included 71 involved hemispheres in 41 patients with moyamoya disease. The disease was categorized into 6 stages according to Suzuki’s angiographic staging system. The degree of development of each moyamoya vessel was categorized into 3 grades.RESULTSThe LSA started to dilate in stage 2, showed the most prominent development in stage 3, and decreased in more advanced stages (p < 0.001). The AChA most notably developed in stage 3 and gradually shrank (p = 0.04). The PCoA started to dilate in stage 3 and showed the most prominent development in stage 4 (p = 0.03). The PChA started to dilate in stage 3 and showed the most prominent development in stages 4 to 5 (p < 0.001). Patient age was negatively related to LSA development (p = 0.01, R = 0.30) and was positively associated with the abnormal dilation and extension of the PCoA (p = 0.02, R = 0.28) and PChA (p < 0.001, R = 0.45). The PCoA, AChA, and PChA more distinctly developed in hemispheres with intracerebral or intraventricular hemorrhage than in hemispheres with ischemic stroke or transient ischemic attack (p < 0.001, p = 0.03, and p = 0.03, respectively).CONCLUSIONSThis study suggests that the collateral channels through moyamoya vessels longitudinally shift from the anterior to posterior component during disease progression and aging, which may be closely related to the onset of hemorrhagic stroke in adult moyamoya disease.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3