The motor-evoked potential threshold evaluated by tractography and electrical stimulation

Author:

Kamada Kyousuke1,Todo Tomoki1,Ota Takahiro1,Ino Kenji2,Masutani Yoshitaka2,Aoki Shigeki2,Takeuchi Fumiya3,Kawai Kensuke1,Saito Nobuhito1

Affiliation:

1. Departments of Neurosurgery and

2. Radiology, Faculty of Medicine, The University of Tokyo; and

3. Research Institute for Electronic Science, Hokkaido University, Hokkaido, Japan

Abstract

Object To validate the corticospinal tract (CST) illustrated by diffusion tensor imaging, the authors used tractography-integrated neuronavigation and direct fiber stimulation with monopolar electric currents. Methods Forty patients with brain lesions adjacent to the CST were studied. During the operation, the motor responses (motor evoked potential [MEP]) elicited at the hand by the cortical stimulation to the hand motor area were continuously monitored, maintaining the consistent stimulus intensity (mean 15.1 ± 2.21 mA). During lesion resection, direct fiber stimulation was applied to elicit MEP (referred to as fiber MEP) to identify the CST functionally. The threshold intensity for the fiber MEP was determined by searching for the best stimulus point and changing the stimulus intensity. The minimum distance between the resection border and illustrated CST was measured on postoperative isotropic images. Results Direct fiber stimulation demonstrated that tractography accurately reflected anatomical CST functioning. There were strong correlations between stimulus intensity for the fiber MEP and the distance between the CST and the stimulus points. The results indicate that the minimum stimulus intensity of 20, 15, 10, and 5 mA had stimulus points ~ 16, 13.2, 9.6, and 4.8 mm from the CST, respectively. The convergent calculation formulated 1.8 mA as the electrical threshold of the CST for the fiber MEP, which was much smaller than that of the hand motor area. Conclusions The investigators found that diffusion tensor imaging–based tractography is a reliable way to map the white matter connections in the entire brain in clinical and basic neuroscience applications. By combining these techniques, investigating the cortical-subcortical connections in the human CNS could contribute to elucidating the neural networks of the human brain and shed light on higher brain functions.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3