Endovascular treatment of intracranial aneurysms: comparative evaluation in a terminal bifurcation aneurysm model in dogs

Author:

Yoshino Yoshikazu,Niimi Yasunari,Song Joon K.,Silane Michael,Berenstein Alejandro

Abstract

Object. The authors investigated whether HydroCoils decreased coil compaction and aneurysm recanalization in a canine model of a large, wide-necked, high-flow bifurcation aneurysm. Methods. Eleven experimental aneurysms were created. Two aneurysms were untreated (Group 1); three were treated with standard platinum coils (Guglielmi Detachable Coils; Group 2); and six were treated with platinum framing coils and filling HydroCoils (Group 3). Comparative angiographic and histopathological data were analyzed at 2 weeks and again at 3 months. At 3 months, the Group 1 aneurysms remained patent without spontaneous thrombosis. After coil placement the percentage of aneurysm filling by volume ranged from 59 to 90% (mean 75.4%) for Group 3 (HydroCoil-treated) and 34.3 to 48.9% (mean 39.6%) for Group 2 (GDC-treated) (p < 0.05). At 14 days, two of the three Group 2 aneurysms exhibited coil compaction and aneurysm recanalization at the neck; in both cases the condition worsened at 3 months. At 14 days and 3 months, five of the six Group 3 aneurysms were 100%, and one of six was 90% occluded and remained stable. At 3 months, the neointima of the aneurysm neck was significantly thicker in the Group 3 lesions, which had been treated by HydroCoils (0.329 ± 0.191 mm), than in Group 2 lesions, which had been treated with GDCs (0.026 ± 0.018 mm) (p , 0.001). No thrombus formation occurred in Group 2; however, in two of the six aneurysms in Group 3, thrombus formed at the coil—neck interface. Conclusions. The experimental canine bifurcation aneurysm model overcomes the limitations of side-wall aneurysm models. In this model, HydroCoils resulted in significantly denser coil packing, less follow-up coil compaction, and thicker neointimal tissue at the neck of the lesion. HydroCoils also appeared more thrombogenic at the aneurysm neck—parent artery interface.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3