White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn

Author:

Sincoff Eric H.,Tan Yunxi,Abdulrauf Saleem I.

Abstract

Object. The aim of this anatomical study was to define more fully the three-dimensional (3D) relationships between the optic radiations and the temporal horn and superficial anatomy of the temporal lobe by using the Klingler white matter fiber dissection technique. These findings were correlated with established surgical trajectories to the temporal horn. Such surgical trajectories have implications for amygdalohippocampectomy and other procedures that involve entering the temporal horn for the resection of tumors or vascular lesions. Methods. Ten human cadaveric hemispheres were prepared with several cycles of freezing and thawing by using a modification of the method described by Klingler. Wooden spatulas were used to strip away the deeper layers of white matter progressively in a lateromedial direction, and various association, projection, and commissural fibers were demonstrated. As the dissection progressed, photographs of each progressive layer were obtained. Special attention was given to the optic radiation and to the sagittal stratum of which the optic radiation is a part. The trajectories of fibers in the optic radiation were specifically studied in relation to the lateral, medial, superior, and inferior walls of the temporal horn as well as to the superficial anatomy of the temporal lobe. In three of the hemispheres coronal sections were made so that the relationship between the optic radiation and the temporal horn could be studied more fully. In all 10 hemispheres that were dissected the following observations were made. 1) The optic radiation covered the entire lateral aspect of the temporal horn as it extends to the occipital horn. 2) The anterior tip of the temporal horn was covered by the anterior optic radiation along its lateral half. 3) The entire medial wall of the temporal horn was free from optic radiation fibers, except at the level at which these fibers arise from the lateral geniculate body to ascend over the roof of the temporal horn. 4) The superior wall of the temporal horn was covered by optic radiation fibers. 5) The entire inferior wall of the temporal horn was free from optic radiation fibers anterior to the level of the lateral geniculate body. Conclusions. Fiber dissections of the temporal lobe and horn demonstrated the complex 3D relationships between the optic radiations and the temporal horn and superficial anatomy of the temporal lobe. Based on the results of this study, the authors define two anatomical surgical trajectories to the temporal horn that would avoid the optic radiations. The first of these involves a transsylvian anterior medial approach and the second a pure inferior trajectory through a fusiform gyrus. Lateral approaches to the temporal horn through the superior and middle gyri, based on the authors' findings, would traverse the optic radiations.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3